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and
INTRODUCTION John M. Thole
Computation of the shape of a pressurized thin spheroid shell
composed of a large number of identical flat gores requires solution of
five nonlinear partial differential equations of equilibrium and boundary
conditions for three displacements of a gore. The position of each point
on the gore could be determined as a function of two independent variables,
namely, the distance of the point from the center line of the gore and
the latitude of the point with respect to the equatorial plane of the
spheroid. For an approximate solution to these nonlinear partial differ-
ential equations each displacement is expanded into a power series of the
distance of the point from the gore center line such that the coefficients
of the power series are at the most functions of the latitude. By equating
to zero the terms of the lowest power in each equation, five new nonlinear
differential equations for the six coefficients (two for each displacement)
are obtained. The approximate solution of these equations by perturbation
technique led to three displacement functions of the gore with one unknown
constant. Application of variational methed tc the total elastic strain

and potential energy of the system led to the evaluation of the above

mentioned constant.

In this analysis, it is assumed that the displacement of the spheroid
due to the gravity is negligible compared to the one caused by the constant
internal pressure. It is also assumed that the material of the spheroid

is homogeneous and isotropic and it obeys Hooke's law.
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Finally this method of analysis is applied to Echo II, the 135
foot diameter passive communication satellite. Since the 3-ply aluminum-
mylar-aluminum material of the satellite does not satisfy the require-
ments implied in the above mentioned assumptions, therefore the
analytical results obtained here are expected to be only an

approximation of the actual c¢ase,

THEORY

In order to determine the shape of a thin spheroid shell composed
of identical flat gores it is sufficient to compute the true shape of
a gore in the pressurized state. To do this, it is assumed that the
material of the spheroid is homogeneous isotropic, and linear elastic,
It is also assumed that the effect of gravity upon the shape of the
gpheroid is negligible in comparison with that of the constant internal
pressure,

Let Cartesian coordinate axes be drawn in such a way that the
origin O be located at the center of the balloon, y axis be along the
polar axis, and Z axis be extended through the center of a gore, as
shown in Figure 1. Draw X'Y'Z axes from a point P of the gore in such
a way that X' axis be parallel to X axis, Z' axis be in the direction
OP, and Y' (or ©) axis be tangent to the meridian at point P (Figure 1).

In the pressurized state of eguilibrium, the resultant of all the

forces acting on an element of the shell in the direction X', 8 and 7!
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Figure 1| - Coordinate Axes and Displacement Components
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vanishes. Let Ny, Ng, and Nxg be nromal and shear tractions per unit

length of membrane, @ be the angle between the position vector and the

equatorial plane, and p be the internal pressure of the spheroid, as

shown in Figure 2. Hence,
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Let u, v, and w be displacement components at a point P in the directions

X', Y', and Z' respectively (Figure 2). The elastic strains are given by:
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where K = Et
1_2

is membrane stiffness, and E, t, and F are Young's modulus,
thickness of the shell and Poisson's ratio

,» respectively. Substitution
of Eqs. (2} into Eqs. (3) leads to
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Figure 2 - Forces Acting on an Element of Gore
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Substitution of Eqs. (4) into Eqs. (1) yields
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The boundary conditions are:

ngzo on X=yryo Cos®
U =o WCs 8 -V Sin® oYL Y= rd Cou & (6)
along the seam, where X = %% . The first expression indicates that due

to symmetry shear stress vanishes along the seam where any two adjacent
gores meet, and the second expression implies that the points along each
seam move in the meridional plane. Since the coefficients of only the
first two terms of the power series expansion of displacements will be
determined by this method, continuity of slope in the plane normal to
the seam cannot be used as a third boundary condition. The use of such
a boundary condition would lead to an erroneous solution, namely, that
the cross section of the spheroid with any plane normal to its polar axis
is a true circle, no matter what the magnitude of the internal pressure.
Instead, a virtual displacement is given to the pressurized spheroid in
the state of equilibrium and change of the total elastic strain and poten-
tial energy of the spheroid and the load is equated to zero.

Let r be the radius of the centerline of a gore before any load is
applied, and a, b, ¢, d, f and g be functions of variable angle 6. Displace-~

ments W, U, and V may be expanded into power series as following:

2
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Substitution of Eqs. (7) and the last one of Egqs. (4) into Eqs. (5) and
(6) leads to
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Neglecting small terms of higher order in Eqs. (8) leads to
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Since n, the number of gores, is assumed to be largé therefore o 2 is
very small. Thus perturbation technique can be applied to the functions
a, b, ¢, d, f, and g in the following fashion:

& (B)s Qo(6) + A, (9)+ -
b(el= by(o) +o(7'b,(@)—a-‘~

Clo)= Co(B)+ ™ C, ()
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fer= folo) +Hf () -
9(6) = 8,(8) * @9, (0)v - o)

Substitution of Eqs. (10) into Eqs. (9) yields a set of five nonlinear
differential equations in terms of 45, bo, ¢o, do, fo, 8o, aj, by, €1,
d;, etc. containing even powers of X . Terms containing each power

of & in each differential equation must independently vanish. The

terms independent of & must vanish in the following way:
2 _
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(1)
The solution of the above equations could be given as the following:
b, = Consiant = B
2
do - - "Zg' B -‘;" B
Q.= C, '-f—co =ﬂo=o (12)
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The coefficients of 2 in Eqs. (9) must vanish in the following

fashion:
cdy b L —epp 42 + 8B =0
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The solution of Eqs

1

kal-

. (13) could be written as:
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in which the constant coefficients are given by
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Knowing the value of Poisson's ratio, one can easily evaluate in an
orderly manner Y » Fps Al’ Cl’ Ag, Cg, Dy, and Gl as a function of
Constant B.

To evaluate constant B, the method of virtual displacement may be

utilized. The elastic strain energy of one quarter of a gore is given by
6= E}_ x=voCos®
= | -
T-f L (NMebx + N €+ 2 Nyg Exp) raxde
9=0 “‘y=o (16)

Substitution of stress and strain values in Eq. (16) yields
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In a virtual displacement corresponding to change of B by J-B the work

done by the internal pressure for a quarter of a gore is given by
=  R=rvlose

_JE; = 2 ‘B‘VV
éB 1 esBrdxdc&) S B

=0 %x=0 (18)

in which § is the total work done by the internal pressure for a quarter
gore, and W is the radial displacement given by Eqs. (7). Hence, the

Constant B could be determined from
M X=reo Cos @

};T fz* QW
=T e o e a%réyde (19)

Thus for a given pressure p, Eq. (19) in conjunction with Eq. (17), (7),

(10), (12), (14) and (15) furnishes B which upon substitution inte Eq.
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(15) gives coefficients Ay, Ay, etc. Substitution of these coefficients
into Eq. (14) in conjunction with Eqs. (7), (10) and (12) gives the

three displacement functions u, v, and w.

APPLICATION OF THEORY TO ECHQ IT

The 135 foot diameter Echo II is composed of 106 identical gores
with a maximum width of 4 feet which occurs in the equatorial plane of
the balloon. The 3-ply material of the balloon is composed of 0.00035
in. thick mylar sandwiched between two layers of aluminum of 0.000l8 in.
thickness each. The adjoining gores are located edge to edge with each
other with one inch wide tape of the same material sealing the seams
lengthwise. When separation of the two half-canisters takes place in
the initial phase of orbiting, the residual air and water vapor inside the folded
balloon which is of the order of magnitude of one millimeter inflates the
satellite. While initially flat, each gore forms a narrow transverse
portion of a half circular cylindrical surface of 135 feet diameter.
Thus the initial shape of the balloon ks a spheroid with 0.356 in. maximum
deviation from a sphere which occurs in the equatorial plane.

Due to the solar radiation skin temperature increases and as a
result inflation material sublimes and builds wup pressure until a
maximum internal pressure of 225 microns is reached. This maximum
pressure corresponds to a membrane stress of 1.7 1lb/in.

Although the material of the balloon is rather nonhomogeneous and
anisotropic and it does not quite obey Hooke's law, nevertheless for the
purpose of approximation, it is assumed that the requirements of homogeneity,

isotropy and linear elasticity necessitated by this analysis are met.
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The average value of K corresponding to 1.70 lb/in. skin traction (given
by Tests No. 1, 3, 4, and 6 of Reference 3) is 1050 1b/in.

Since nominal Young's modulus for aluminum is 10.5 x 108 psi and
for mylar is .55 x 106 psil, therefore it is expected that aluminum
should carry most of the load. The nominal wvalue of K for aluminum

layers is given by:

Ky = IEt = = 4240 1b/in.

in which ;4 = .33 has been inserted. This value of K, is much larger
than the experimental value K = 1050 1b/in. Therefore, the actual Young's
modulus and perhaps Poisson's ratio for thin layers of aluminum are
smaller than the nominal ones.

Following the steps suggested in the last paragraph of the previous
section one could get an Eigen value equation for B whose coefficients
are functions of parameter m = EE%Z . For different values of maximum

pressure the fundamental Eigen wvalue for B is computed and listed in

Table 1. Hence for p = 225 micron (or .000435 lb/inz).

.000435 x 810
1050 x ( ¢ )
106

2 = 3.81

which corresponds to B = -.319 in Table 1. Thus, the maximum differential
radial displacement at the midgore and at the seam which occurs in the

equatorial plane is given by

2
w] Y =B X)) 2 ozzy
6:0 9:0 r in
X:—'O x=24_'n lx=2-4

This corresponds to a maximum radial difference
A =0.356 - 0.227 = 0.129 in which 0.356 is in its initial

unpressurized value.
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TABLE I

Values of B versus m

m B m B m B m B m B

0 0 2,0 =4294 4.0  =.320 6.0 =.320 8.0 =317
1 -.043 2,1 -.298 4.1  =.320 6.1  =a320 8.1  =,317
o2 =4079 2.2 =300 Le2  =a320 622 -4320 8.2  =4317
3 =109 2.3 =.303 he3  =4320 6.3  =4319 8.3  =4317
4 =.135 2.4 =4305 boti  =4320 6.4 =4319 8 =e3l7
o5 =.157 2.5 =.307 Ge5  =4320 6.5 =a319 8.5 =317
6 w176 2.6  =.309 4eb6 =320 6.6 =.319 8s6  =4316
o7 =.193 2.7  =.311 4eT  =4320 6.7 -.319 8.7 =316
8 =207 2.8 =.312 4.8  =.321 6.8 =4319 8.8 =.316
W9 =e220 2.9  =.313 4.9 =4321 6.9  =.319 8.9 -.316
1.0 =.213 3.0 =314 5.0  =4321 7.0 =.319 9,0 =.316
1ol =.241 3.1 =315 5,1 =321 7.1 -.318 9.1 =.316
1.2 =.250 3,2 -.316 5.2 =321 7.2 =318 9.2  =.316
1.3  -.258 3.3 =317 5.3 =321 7.3 =.318 9.3  -.316
le  =4265 3.4 =318 5.4 =.320 Tole  =u318 9.4  =.316
1.5 =.272 3.5 ~e318 5.5 =320 7.5 -.318 9.5 =.315
1e6  =4277 3.6 =319 5.6 =320 7.6 =.318 9.6 =.315
1.7 =.282 3.7 =319 5.7 =320 7.7 -.318 947  =4315
1.8 =.287 3.8 -.319 5.8 =,320 7.8  -.317 948  =4315

1-9 -.291 3.9 -0320 5.9 -.320 7.9 --317 9.9 -.315
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CONCLUSIONS
The maximum differential radial displacement of a pressurized
spheroid, which is composed of identical flat gores, in a zerco gravity
field, computed by this technique is believed to be a very good approxi-
mation to the true one, provided that the material is homogeneous, iso-
tropic, and linearly elastic.
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